
A Distributed Semi-Supervised Platform for DNase-Seq Data
Analytics using Deep Generative Convolutional Networks

Shayan Shams∗
Louisiana State University
Baton Rouge, Louisiana
sshams2@cct.lsu.edu

Richard Platania∗
Louisiana State University
Baton Rouge, Louisiana

rplata1@lsu.edu

Joohyun Kim
Louisiana State University
Baton Rouge, Louisiana

jhkim@cct.lsu.edu

Jian Zhang
Louisiana State University
Baton Rouge, Louisiana
zhang@csc.lsu.edu

Kisung Lee
Louisiana State University
Baton Rouge, Louisiana

lee@csc.lsu.edu

Seungwon Yang
Louisiana State University
Baton Rouge, Louisiana
seungwonyang@lsu.edu

Seung-Jong Park
Louisiana State University
Baton Rouge, Louisiana
sjpark@cct.lsu.edu

ABSTRACT
A deep learning approach for analyzing DNase-seq datasets is pre-
sented, which has promising potentials for unraveling biological
underpinnings on transcription regulation mechanisms. Further
understanding of these mechanisms can lead to important advances
in life sciences in general and drug, biomarker discovery, and cancer
research in particular. Motivated by recent remarkable advances
in the field of deep learning, we developed a platform, Deep Semi-
Supervised DNase-seq Analytics (DSSDA). Primarily empowered
by deep generative Convolutional Networks (ConvNets), the most
notable aspect is the capability of semi-supervised learning, which
is highly beneficial for common biological settings often plagued
with a less sufficient number of labeled data. In addition, we in-
vestigated a k-mer based continuous vector space representation,
attempting further improvement on learning power with the consid-
eration of the nature of biological sequences for features associated
with locality-based relationships between neighboring nucleotides.
DSSDA employs a modified Ladder Network for underlying gener-
ative model architecture, and its performance is demonstrated on
the cell type classification task using sequences from large-scale
DNase-seq experiments. We report the performance of DSSDA in
both fully-supervised setting, in which DSSDA outperforms widely-
known ConvNet models (94.6% classification accuracy), and semi-
supervised setting for which, even with less than 10% of labeled
data, DSSDA performs relatively comparable to other ConvNets
using the full data set. Our results underscore, in order to deal with
∗This author contributed equally to this work.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACM-BCB’18, August 29-September 1, 2018, Washington, DC, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5794-4/18/08. . . $15.00
https://doi.org/10.1145/3233547.3233601

challenging genomic sequence datasets, the need of a better deep
learning method to learn latent features and representation.

KEYWORDS
DNase-Seq; Convolutional Networks; Semi-Supervised learning;
Generative models; Continuous vector representation; Deep Learn-
ing

ACM Reference Format:
Shayan Shams, Richard Platania[1], Joohyun Kim, Jian Zhang, Kisung Lee,
Seungwon Yang, and Seung-Jong Park. 2018. A Distributed Semi-Supervised
Platform for DNase-Seq Data Analytics using Deep Generative Convolu-
tional Networks. In Proceedings of 9th ACM International Conference on
Bioinformatics, Computational Biology and Health Informatics (ACM-BCB’18).
ACM,NewYork, NY, USA, 10 pages. https://doi.org/10.1145/3233547.3233601

1 INTRODUCTION
In the past decade, high-throughput sequencing technologies, such
as Next-Generation Sequencing (NGS), have significantly advanced
life sciences, particularly with their genome-wide profiling capaci-
ties for genomic, transcriptomic, and even epigenomic signatures.
Despite enormous information contents, the large amount of raw
sequencing data sets produced, as well as inherently complex bio-
logical implications, pose considerable analytical challenges[7].

To tackle such challenges, life science domains have begun to em-
brace deep learning methodologies. This is encouraged by impres-
sive success in a variety of fields, exhibiting particularly remarkable
accuracy for image, textual, and speech datasets[18, 20, 32]. Already,
some recent works have explored the potentials of deep learning to
improve upon methods for biological sequences[2, 15, 41]. Notably,
the most attractive aspect of deep learning appears to be its intrinsic
capability for end-to-end solutions (e.g., allowing the direct use of
biological data, such as nucleotide sequences, as input). This is in
contrast to conventional machine learning methods relying upon
hand-crafted feature sets, requiring a significant amount of domain
knowledge. This capability is in fact closely related to powerful
representation learning, leading to discovery of latent features of a

Session 10: Deep Learning and Applications ACM-BCB’18, August 29-September 1, 2018, Washington, DC, USA

244

https://doi.org/10.1145/3233547.3233601
https://doi.org/10.1145/3233547.3233601

given data set[5]. In addition, a convenient extension to incorporate
multi-task learning underscores its great potential for combining
heterogeneous information from multi-omics data sets[41].

Regarding life science applications, one of the major obstacles
is the difficulty of producing labeled data. Experimentally labeling
data is both costly and, in some cases, not feasible. This deficiency
of labeled data causes particular difficulty with respect to tradi-
tional deep learning, which is typically performed in a supervised
manner. To overcome this challenge, semi-supervised methods are
highly desirable[38]. In fact, an impressive increase in throughput
in sequencing technologies ironically hampers a step for labeling
sequences, implying an urgent demand of methods that mitigate
the problem.

In this work, we introduce DSSDA, a distributed semi-supervised
deep learning method, and demonstrate its performance for cell-
type classification task using sequences, identified as DNase I hyper-
sensitive Sites (DHSs), obtained from DNase-Seq experiments. We
design DSSDA based on the Ladder Network[29, 30, 37] architecture
considering its core design strategy to carry out semi-supervised
learning. Our platform is built based upon the Ladder Network
by adding the ConvNet architecture, rather than traditional Multi-
Layer Perceptron (MLP), resulting in the combination of the two
effective methodologies in the field of deep learning. We also in-
vestigate two different input representations: one-hot vector and
continuous vector space models[27, 28]. The latter is particularly
considered as an attempt to examine the unknown nature of bio-
logical sequences. It hypothesizes that the local correlation over
neighboring nucleotides is important for additional improvement
of prediction.

Our main contributions can be divided into three parts: (1) We
provide DSSDA, a distributed and semi-supervised method for bio-
logical sequence classification based on deep generative ConvNets.
In particular, it uses a modified version of the ladder architecture
that supports ConvNets. (2) DSSDA improves upon previous ac-
curacy results in fully-supervised mode and achieves comparable
accuracy by using only 10% of labeled data in semi-supervised
mode. (3) We compare two input representations for sequence data,
one-hot vector and probabilistic continuous vector-space represen-
tations, and present useful findings with our experiments for the
latter.

The remainder of the paper is organized as follows. We first give
insight towards the background of deep learning and our biological
analysis task. Following this, we summarize related works. Then,
our methods are detailed, primarily relating to the sequence clas-
sification problem, dataset, input representations, deep learning
models, and DSSDA. After that, results are presented followed by
discussions focusing on implications of the resulting strengths of
DSSDA. Finally, we conclude the paper and state our plans for
future works.

2 BACKGROUND
Our background is divided into two parts. First we discuss DNase-
Seq data and analytics. The second part focuses on the background
of supervised and semi-supervised deep learning with ConvNets.

2.1 DNase-Seq and Data Analytics
An understanding of gene expression mechanisms in a living cell
is one of the holy grails in biology and has immense implications
for life sciences, in general, and diseases such as cancer, in partic-
ular. While directly measuring gene expression levels with RNA-
seq is still a common approach, unraveling epigenomic compo-
nents is becoming increasingly recognized as a crucial task since
deeper insights into deciphering the regulation of transcription
can be obtained [7, 19]. Among various methods for probing epige-
nomic nature, DNase-Seq is a NGS platform for detecting directly
open chromatin regions implicated as DNase I Hypersensitive Sites
(DHSs) [11, 13, 36]. Experimentally identified DHSs from various
cell types and conditions provide important clues towards how eu-
karyote genomes are conditionally organized via chromatin pack-
aging with other molecules, such as histone proteins and various
markers. This consequently informs regions only to be dynami-
cally exposed for specific binding of regulatory molecules such as
transcription factors[11, 13, 33].

The two major consortia, the Encyclopedia of DNA Element
(ENCODE) [7] and Roadmap Epigenomics [19], have carried out
large-scale DNase-Seq experiments against human samples of var-
ious cell and tissue types. Analyzing such large scale data sets
in order to decipher underlying unknown implications remains
challenging [41].

2.2 Supervised and Semi-Supervised Deep
Learning with ConvNets

Supervised learning is themost common and frequently usedmethod
in many machine learning tasks and deep learning problems. On
the other hand, semi-supervised learning is gaining popularity
within domains plagued by large amounts of unlabeled data. Semi-
supervised learning techniques enable training a model with data
having limited labels[38]. While there is a typical sacrifice in accu-
racy when using semi-supervised learning, advanced techniques
have begun to close the gap between fully-supervised and semi-
supervised deep learning performance.

Among many deep learning architectures, ConvNet models have
been remarkably successful for image classification and other prob-
lems such as speech recognition and natural language processing[18,
20]. Their success is rooted in their capacity with multiple stacked
layers and efficient feature extraction with convolutional layers,
often explained as a powerful representation learning method. In
the last few years, the advent of ConvNets has been sensational,
with new additions on top of the classical form, enabling decon-
volutional architecture, object detection and image segmentation,
generative models, and semi-supervised learning[10, 16, 17, 39].
One challenging problem with the ConvNet models is the difficulty
of finding an optimal architecture and hyper-parameters for the
best outcome[40].

In addition to the use of ConvNets, our work specifically focuses
on the use of generative models for more powerful representation
learning and its extension for semi-supervised learning. Generative
deep learning models are one of great advances in the modern deep
learning due to enabling unsupervised learning[14].

Session 10: Deep Learning and Applications ACM-BCB’18, August 29-September 1, 2018, Washington, DC, USA

245

Various algorithms for generative models have been proposed
recently, such as Variational Autoencoders (VAE)[16, 31] and Gen-
erative Adversarial Networks (GAN)[10], and thus can be used
for our purpose. We found that the Ladder Network architecture
was attractive with its own unique properties[30, 37]. For example,
the architecture can be utilized with different feed-forward net-
works, and the lateral connections provide an interesting addition
to the underlying denoising autoencoder-based generative model
scheme[29].

3 RELATEDWORKS
Machine learning methods have been actively developed for bi-
ological sequence problems and dominated by methods such as
Support Vector Machine[9]. Several recent works have employed
deep learning and demonstrated advantages over conventional
methods in terms of scalability, support of multi-tasking, and other
benefits [2, 12, 41].

Kelley et al. previously applied ConvNets to DNase-seq data [15].
One of their focuses, like our main task, was cell-type classifica-
tion. Furthermore, they found that the features generated by early
convolution layers are representative of sequence motifs of known
transcription factor binding sites. Unlike their work, which is only
based on a simple ConvNet model (LeNet[21]), our work, DSSDA,
can employ any deep ConvNet models and incorporate them in a
semi-supervised-capable architecture[29, 30, 37].

As for our methodological sides, the Ladder Network is the cen-
tral idea and well explained in recent papers[29, 30, 37]. This net-
work model is designed to implement the generative capabilities
by following the methodology of the denoising autoencoder-based
approach[6]. Semi-supervised learning gets less attention outside
of computer sciences and statistical learning fields but has still been
one of the active research areas[16, 24, 30, 38].

Input representation has been extensively studied for language
modeling in Natural Language Processing. We employed an ap-
proach, word2vec, introduced by Mikolov et al.[27], which can be
implemented in either of the two different schemes: the Continuous
Bag-of-Words (CBOW) model and the Skip-Gram model.

4 METHODS
In this section, we will describe the sequence classification prob-
lem, the dataset used for this work, the two input representation
techniques (namely, One-hot vector and continuous vector-space
model), the deep learning models constituting DSSDA employed
for supervised and semi-supervised learning modes, and our dis-
tributed training implementation.

4.1 Sequence Classification Problem
A sequence may be associated with multiple cell/tissue types. Hence
it may have multiple labels. The classification problem is to deter-
mine, for a given sequence, all the labels that apply to the sequence.
In other words, the classification is correct if and only if all pos-
sible labels for that sequence are correctly predicted. There are
a total of 164 cell and tissue types from datasets. 125 cell types
come from ENCODE[36] and 39 from the Roadmap Epigenomics
Consortium [26]. These two datasets are merged to form our entire

dataset. The cell or tissue types originating each sequence is its
label for the main classification task.

For pre-processing the raw data, we followed the same process
of Kelley et al. [15]. We downloaded BED files and merged them
into one BED and activity table. Sequences with more than 200
bp overlap were merged and extended to 600 bp, using the hg19
reference genome.

4.2 Input Representation
4.2.1 One-hot vector representation. The default representation

for our input is the one-hot vector format, and it is preprocessed as
follows. Using the script provided by Kelley et al.1, for a 600 bp se-
quence input, in the one-hot vector representation, each nucleotide
position has a four-element vector representing A, T, C, G, with
one nucleotideâĂŹs bit set to one, resulting in a vector of size 2,400
= (1 × 600 × 4). Since ConvNets are mostly used for images with an
input typically described as (width, height, channel), each sequence
can be seen as an image with a width of 600, height of 1, and with 4
channels in comparison with RGB pictures which have 3 channels.

4.2.2 Probabilistic continuous vector-spacemodel. A k-mer based
approach is popular to deal with genomic data[9], facilitating to
preserve the locality relationship between adjacent k-mers in the se-
quence. However, using a k-mer based approach that encodes each
k-mer as a discrete arbitrary ID will produce limited information
regarding the relationship between k-mers, structure, and seman-
tics of sequence. As a result, the model is able to leverage very little
of what it has learned about one k-mer when considering other
k-mers. Furthermore, representing k-mers as random IDs causes
data sparsity, which means that more data is required for successful
training. Probabilistic embedding models represent each word in
a continuous vector space, where semantically similar words are
mapped to nearby points[4]. We believe this makes sense for a
k-mer based approach and, more importantly, further increases the
representation learning performance provided by ConvNet-based
mapping between inputs and labels. We use CBOW to train the
model with the objective of discriminating a target k-mer from a
noise k-mer.

We consider each 3-mer as one word. Note that the size of the
k-mer is in fact arbitrary and remains to be logically determined if
possible. As a result, we have 598 3-mers for each sequence and a
vocabulary length of 4 × 4 × 4, since each position can have four
characters. We consider a window size of one, which means the
model should predict the one adjacent k-mer, and the context length
considered is nine k-mers. We used stochastic gradient descent
(SGD) using one k-mer at a time and a mini-batch size of 16 for
optimization to produce embedding representation.

4.3 Deep ConvNets for Supervised learning
Since the overall architectural design of DSSDA supports any Con-
vNet model, we first tested well-known ConvNet models as stan-
dalone before being embedded in DSSDA, which are the winners of
the ImageNet Large Scale Visual Recognition Competition (ILSVRC)
[8]. The models include AlexNet and InceptionV1 [18, 34, 35], along
with the historically well-known LeNet[22] model. Note that the

1https://github.com/davek44/Basset

Session 10: Deep Learning and Applications ACM-BCB’18, August 29-September 1, 2018, Washington, DC, USA

246

𝑌" 𝑌

𝑵(𝟎, 𝝈𝟐)

𝑵(𝟎, 𝝈𝟐)

𝑵(𝟎, 𝝈𝟐)

𝑵(𝟎, 𝝈𝟐)

𝑵(𝟎, 𝝈𝟐)

𝑵(𝟎, 𝝈𝟐)

𝑵(𝟎, 𝝈𝟐)

𝑵(𝟎, 𝝈𝟐)

XX

𝑵(𝟎, 𝝈𝟐)
𝑥+

�̃�.

�̃�/

�̃�0

�̃�1

�̃�2
�̃�3

�̃�4

�̃�5

𝑥6

�̂�.

�̂�/

�̂�0

�̂�1

�̂�2
�̂�3

�̂�4

�̂�5

𝑥

𝑧.

𝑧/

𝑧0

𝑧1

𝑧2
𝑧3

𝑧4

𝑧5

𝐶9:

𝐶9.

𝐶9/

𝐶90

𝐶91

𝐶92

𝐶93
𝐶94

𝐶95

Corrupted Encoder Decoder Clean Encoder

Figure 1: Schematic illustration of DSSDA architecture.
Here, as an example, the employed ConvNet architecture is
AlexNet.

LeNet architecture was used by Kelley et al. [15], and we refer to
this model as the baseline. For the remaining models, our imple-
mentations followed the main architecture of the original models,
such as the number of convolutional and pooling layers. However,
hyper-parameters, such as filter size, stride, initialization method,
batch normalization, number of neurons in fully connected layer,
and batch size, were tuned to ensure the best performance of each
model specifically for the problem at hand. All ConvNet models
were designed and implemented in TensorFlow version 1.2[1].

The performance of each model is measured with True Positive
Rate and False Positive Rate, and thus presented with the Area
Under Receiver Operating Characteristic Curve (in short, AUC).

4.4 Deep Generative ConvNets for
Semi-supervised Learning

DSSDA is able to run a supervised task but more importantly en-
ables a high-performing semi-supervised learning task. As it is
shown in Figure 1, DSSDA comprises two encoder paths and one
decoder path (middle). The only difference between clean and cor-
rupted encoder is that the corrupted encoder (left) adds Gaussian
noise N (0,σ 2) to all layers. Lateral connections for each layer of
the decoder from the corresponding layer of the encoder have a
potential role for more powerful representation learning by influ-
encing the encoder function to the decoder function. Note that
without such a mechanism, unsupervised learning is highly likely
to be non-specific, as most approaches suffer. In brief, the central
rational behind this architecture is its capacity such that (1) it can
act as a generative model with a denoising autoencoder embedded
in the model, (2) it provides simultaneous learning of discriminative
(supervised) and generative model (unsupervised), and (3) it is a hi-
erarchical latent model with skip connections. The decoder inverts
the mappings on each layer of the corrupted encoder and supports
unsupervised learning. It further uses a denoising function to re-
construct the activations of each layer given the corrupted version.
The corrupted encoder function is defined in Eq.1, in whichW l is

the weights of the convolution filters at layer l . h̃l−1 is the output of
the previous layer, andConv is the Convolution operation. N (0,σ 2)
is Gaussian noise, h̃l is the output of layer l , and h̃0 = x + noise is
the original input x with noise added. (See Figure 1.)

z̃l = batchnorm(Conv(h̃l−1,W l) + Bias) + N (0,σ 2)

h̃l = RELU (z̃l)
(1)

The clean encoder follows the same weights and hyper-parameters,
for both the convolutional and the fully connected layers, as the
corrupted encoder except that no noise is added at each layer. We
denote the output of the clean encoder at layer l as zl . The final
classification result is the output of the clean encoder. In the decoder
path, we use deconvolution layers and a denoising function to
reconstruct the output of the corrupted encoder for each layer.
Algorithm 1 shows how the decoder works. In the Algorithm, V l

is the weights of the deconvolution filters. ẑl is the output of the
denoise function for layer l . We used the same denoise function as
the one in Rasmus et al [30]. Furthermore, ẑlBN is the normalized
ẑl for each batch of data with µl and σ l being the mean and the
standard deviation for layer l , respectively.

Algorithm 1 Decoder path

for l = L to 0 do
if l=L then
ul = batchnorm(h̃l)

else
ul = batchnorm(Deconv(ẑl+1,V l+1) + Bias)

end if
ẑl = denoise(z̃l ,ul)
ẑlBN =

ẑl−µ l
σ l

end for

The reconstruction target for each layer of the decoder is the
clean version of the activation provided by each layer of the clean
encoder following Eq.1 but withoutN (0,σ 2). The squared difference
between the reconstruction and the clean version serves as the
denoising cost of that layer, represented as Cld in Figure 1.

The supervised cost is calculated from the output of the corrupted
encoder and the sequence label(s). Let N be the number of samples,
S the set of classes (|S | the number of classes), andY ctarget(n) ∈ {0, 1}
be the indicator of whether the n-th sequence belongs to class c .
The loss function used for calculating the supervised cost is defined
in Eq. 2.

Ypredict = sigmoid(Ỹ)

LossSupervised = − 1
N · |S |

N∑
n=1

∑
c ∈S

(
Y ctarget(n) · logY cpredict(n)+

(1 − Y ctarget(n)) · log(1 − Y cpredict(n))
) (2)

The unsupervised cost is the sum of the denoising costCld across all
layers l , scaled by a hyper-parameter that denotes the significance
of each layer. Eq.3 shows how the unsupervised cost is calculated,

Session 10: Deep Learning and Applications ACM-BCB’18, August 29-September 1, 2018, Washington, DC, USA

247

where λl is the hyper-parameter determining denoising cost.

Costunsupervised =
L∑
l=0

λlC
l
d =

L∑
l=0

λl
N

N∑
l=1

(zl (n) − ẑlBN (n))2
(3)

The final cost, shown in Eq.4, is the sum of supervised and unsu-
pervised cost. The whole network can be trained in fully-labeled or
semi-supervised setting using stochastic gradient descent (SGD) to
minimize the overall cost.

Costoverall = Costunsupervised + Losssupervised (4)

Since our experiments with different supervised models, mentioned
in Section 5.2, show that AlexNet has the best performance among
others for this problem, we chose the AlexNet architecture as base
for our semi-supervised implementation. As it is shown in Fig. 1,
both encoders are using convolutional layers, and the decoder is
using deconvolutional layers for decoding. However, there are some
exceptions. In the encoding path, the first three convolutional lay-
ers are followed by 2 × 1 pooling layers, and in the decoder path,
convolutional layers are replaced with deconvolutional layers (and
pooling layers are replaced with unpooling layers). Also, we imple-
ment fully connected layers with convolutional layers for encoders
and decovolutional layers for decoder to get a better performance
and easier implementation.

Note that the first layer shown in Figure 1 is in fact the input
and the output for the generative pathway, emphasizing the adding
of noise and denoising in both the encoder and decoder paths.
Consequently, with the AlexNet architecture, the decoder layer
has five deconvolutional layers and three fully connected layers.
We chose the noise hyper-parameter λl for all the layers to be
0.2 to make sure all the layers have the same significance when
calculating loss. We trained DSSDA in fully-supervised mode using
100% labeled training set in Table 1. For the semi-supervised mode,
10% (25%) of labeled training set are used, and the remaining 90%
(75%) are given as input for unsupervised learning without any
labels.

4.5 Distributed Training
Training with large-scale data sets is challenging because the train-
ing can often take days or even weeks. As we will see in the results
section, training DSSDA to convergence with even a single state-of-
the-art Nvidia Tesla-P100 GPU takes nearly five days to complete.
Because of this, it is important to consider parallel and distributed
training techniques that improve upon the execution time. In this
section, we describe a few of these techniques that are employed
by DSSDA to make the training time more feasible.

For training DSSDA, we consider data parallelism during the
training process. Data parallelism is fairly straightforward, consist-
ing of duplicating the DSSDA model in each worker and dividing
the input into mini-batches and distributing them among the differ-
ent GPU workers. Each worker will receive a different mini-batch.
The strategy for data parallelism is depicted in Figure 2.

The second technique we will consider is asynchronous train-
ing. When training a model with multiple workers, the gradients

Figure 2: Data parallelism in DSSDA.

computed by each need to be sent to a parameter server. The server
then updates the parameters and redistributes them to the workers.
In synchronous training, this process is performed after training
a single input batch. Asynchronous training can be introduced in
order to limit this parameter communication and synchronization
overhead. For DSSDA, we can specify how often the synchroniza-
tion occurs. There are some trade offs that come with increasing the
asynchronous nature of training. The longer the interval of time
between synchronization, the shorter the average training time per
batch will be. However, this also means that the training becomes
more unstable and does not converge as quickly or easily as fully
synchronous training. DSSDA is able to take advantage of both
synchronous and asynchronous training.

5 RESULTS
In Section 5.1, we explain how the dataset was divided for training,
test, and validation sets. In Section 5.2, we present the comparison
result of our proposed model, DSSDA, with other ConvNets in the
supervised mode. Then, in Section 5.3, we present the results with
DSSDA in the semi-supervised mode. Following this, we give some
results regarding our distributed training in Section 5.4. Our results
for comparing the two input representations and visualization of
regulatory motifs learned with filters in DSSDAare presented in
Sections 5.5 and 5.6, respectively.

5.1 Dataset
In Table 1, the summary of our dataset used for this project is pre-
sented. It is important to note that many sequences originate from
multiple classes (i.e., cell types), requiring multi-label classification,
instead of commonly applied single-label classification. In the su-
pervised setting, the whole training set is used along with their
labels. For the semi-supervised setting, we divide the training set
into labeled and unlabeled inputs, and the latter is used without
labels for unsupervised learning. For the validation and testing,
70,000 and 71,886 are randomly selected, respectively.

Session 10: Deep Learning and Applications ACM-BCB’18, August 29-September 1, 2018, Washington, DC, USA

248

Table 1: Summary of the DNase-Seq data set

Number of the total DHSs 2,071,886
Training Data 1,930,000
Validation Data 70,000
Testing Data 71,886

Number of nucleotides in each DHS 600 bp
Number of cell and tissue types 164

Table 2: Comparison of classification performance between
DSSDA, other ConvNet models, and previously used SVM.

Network Accuracy

gkm-SVM[23] 0.780
LeNet 0.895

Inception 0.911
AlexNet 0.929

DSSDA (all labels) 0.946

DSSDA (10% labeled) 0.822
DSSDA (25% labeled) 0.853

5.2 Supervised Learning
In Table 2, we give the comparison of the mean AUC of 164 classes
between the ConvNet models we tested and DSSDA in the super-
vised mode. Individual AUC for each class is obtained using the
validation dataset comprising of 70,000 sequences. Then, we cal-
culate the mean AUC for all 164 classes. Note that the number of
sequences for each class is not uniform, depending upon sizes of
original experimental data and random selection for validation. As
Table 2 clearly indicates, AlexNet showed the best performance
among the ConvNet models, leading to our decision to choose this
as a model for DSSDA . Importantly, DSSDA containing AlexNet as
an internal ConvNet model outperforms all other models.

To understand how DSSDA outperforms conventional ConvNet
models, we further compare the ROC curves for 10 random classes
between AlexNet and DSSDA. As shown in Figure 3, this compari-
son reveals not only the fact that DSSDA outperforms AlexNet, but
that its classification performance for each class is uniform. This
aspect can be more clearly visualized with the results in Figure 4.

Here, we compare the twomodels again with respect to the calcu-
lated AUC for each class. While the results with the ConvNet model
with AlexNet shows relatively distributed AUCs and occasionally
high variation in some classes, DSSDA produces uniform AUCs.
Calculated standard deviation of AUCs for all 164 classes is 1.02
for DSSDA and 1.85 for AlexNet. We will discuss this more later to
argue the intrinsic advantages of DSSDA with these findings.

5.3 Semi-supervised Learning
Obtaining enough labeled data is one of the huge challenges when it
comes to training a deep learning model. Hence, we are motivated
to decrease the amount of labeled data in our training set with
the goal of maintaining comparable AUC to results from using the
whole labeled data set in the fully-supervised mode. Table 2 shows
our main results for semi-supervised learning. In the case that only

10% of sequences in the training dataset with their labels are used,
along with the remaining 90% of sequences are provided without
labels, DSSDA achieves 0.822 as mean AUC, which is comparable to
results with other ConvNet models. When we use the same model
of Kelley et al.[15] (i.e., LeNet) with 100% of labels, the mean AUC
is 0.895. Note that conventional ConvNets are unable to handle a
data set with only such a small amount of labeled sequences.

5.4 Distributed Training Analysis
In this subsection, we give insight towards our distributed training
analysis. To provide some form of a baseline, the time to train a
batch of size 512 on one P100 GPU is 1.2 seconds for DSSDA. We
discuss the effects of data parallelism and asynchronous training
on performance. For these experiments, the time for one training
iteration was calculated by taking the average of 100 iterations.
Given this 1.2 seconds per training iteration with a single P100
GPU, 90 epochs to convergence, and 1,930,000 sequences, the total
training time took approximately 4.7 days (113 hours).

The data parallelism employed by DSSDA is depicted in Figure 2.
In this example, the model is replicated across three P100 GPUs,
each receiving a mini-batch of size 170 (approximately 512/3). Note
that this strategy can be applied to any number of two or more
GPUs. With this strategy, the average time per iteration is reduced
to approximately 0.55 seconds. This is a speedup of approximately
2.18x over the single GPU speed of 1.2 seconds. In an ideal situation,
the speedup would be 3x since we are dividing the batch into three
parts for each GPU. However, the extra communication overhead
in parameter synchronization leads to reduced performance. Even
with this extra communication overhead, the speedup with three
GPUs results in a training time of approximately 2.18 days compared
to 4.7 days with one GPU. Applying data parallelism to DSSDA
results in multiple days saved in the overall training time.

In an attempt to reduce the communication overhead involved
with parameter-server synchronization, we applied asynchronous
training in DSSDA. To begin, we used the same setup as we had in
the data parallelism experiment (3 GPUs with mini-batches of 170)
and restricted the synchronization to only occur every 20 steps.
While this does reduce the overall average time per training itera-
tion by 2.3x (0.55 to 0.24), it introduces an instability in the model.
We found that, with a more complex model like DSSDA, asynchro-
nous training is not as feasible. After 90 epochs, the number of
epochs at which a single GPU converged, the model was still unsta-
ble and not converged. This lead to a reduced testing accuracy of
approximately 82%, which is significantly lower than DSSDA’s best
accuracy of 94.6%. We found that this trade off in reduced accuracy
for reduced time was not worth the effort in the case of our model
and application.

5.5 Input Representation
As explained in 4.2, the two input representations used are the
one-hot vector format and the embedding vector format with 3-
mer and neural probabilistic continuous vector space model with
word2vec. Since continuous vector space model representation adds
extra computation cost, discussed in detail later, we tested both
input representations for the simple LeNet network architecture.
The other architectures presented a challenge in training time with

Session 10: Deep Learning and Applications ACM-BCB’18, August 29-September 1, 2018, Washington, DC, USA

249

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

Figure 3: Comparison of classification AUC between DSSDA using the fully-supervised learning mode and a best
performing ConvNet architecture, AlexNet (right)

AU
C

Classes Classes

AU
CA
UC

Classes Classes

AU
C

AU
C

Classes Classes

AU
C

Figure 4: Comparison of classification performance between DSSDA (left) in supervised mode and AlexNet (right)
with respect to AUC values for each cell type.

the different input representations since continuous vector space
model representation adds extra computation cost to training. Al-
though LeNet is a simple network, it can still give proper insight
towards the quality of different input representations. Probabilis-
tic continuous vector input representation achieved a final higher
AUC of 0.904 in comparison to 0.89 obtained by one-hot vector.
Another observation is that the embedding vector representation is
found to converge faster. For example, it converged in 42 epochs, in
comparison to one-hot vector representation that converged after
73 epochs. However, time for one training iteration for one-hot
vector encoding is 0.31 second while it is 3.25 seconds for word2vec
for LeNet model and the same batch size. Despite slightly better
accuracy and potential advantages, the word embedding method

requires additional computing cost, compared to one-hot vector
input, which in turn limits the usage of word embedding.

5.6 Motif Vizualization
As shown by Kelley et al. [15], another interesting outcome with
ConvNets is that learned features in filters of convolution layers
could contain the information about real regulatory motifs, such
as transcription factor binding sites. For example, they showed
that the first convolution layer of their model recovers an exten-
sive repertoire of known DNA binding motifs. Following the same
process and using the scripts that they provided2, we present the
comparison of the recognized motifs from Tomtom’s Homo sapiens
motif database [3] and learned motifs by DSSDA for each input

2https://github.com/davek44/Basset

Session 10: Deep Learning and Applications ACM-BCB’18, August 29-September 1, 2018, Washington, DC, USA

250

Motif

Filter

Figure 5: Visualization of learned features from our model.
Known motifs from transcription factor binding site data-
base (top) are found to be picked up by first layer filters (bot-
tom).

0

200

400

-200

-400

-600

-150 -100 -50 0 50 100

Figure 6: Visualization of learned embedding of different 3-
mers via t-SNE.

sequence in Figure 5. The visualized patterns are for the first Con-
volution layer filters in the clean encoder for specific sequences.
It is important to note that many of filters information cannot be
interpreted to DNA binding motifs. Thus, we only visualized those
which can be annotated by the software.

6 DISCUSSION
Here, we will discuss resulting implications from the strengths of
DSSDA. These discussions are divided into two sections: DSSDA for
biological sequence analysis and input representation with proba-
bilistic continuous vector-space model.

6.1 DSSDA for Biological Sequence Analysis
In our comparison among the well-known architectures, AlexNet
showed the best performance and was selected for DSSDA. DSSDA

outperforms the model with the same deep ConvNet architecture
(i.e., AlexNet). This implies further performance gains due to the
learning mechanism with the generative model. Indeed, simultane-
ous training of the discriminative and generative models in encoder
and decoder paths (unsupervised learning mechanism) facilitates
the supervised learning task. In other words, DSSDA can leverage
the features learned from sequences of other classes to learn hidden
features related to different classes. We argue that the results shown
in Figure 4 could support such a claim. The uniform AUC are likely
to be associated with improved generalization from the contribu-
tions of other class sequences. Classification tasks of classes with
an insufficient number of sequences could be improved, compa-
rable to other classes with more samples in the data set. Another
reason for the better accuracy with the Ladder architecture is, as
argued by Valpola[37] and investigated by others[29], the unique
lateral connection would be an additional mechanism to focus on
features selectively learned by the supervised learning during the
unsupervised learning pathway that generally suffers from a large
representation space to be explored.

More importantly, the same argument is applied for its capability
for semi-supervised learning. Indeed, despite a smaller number of
labeled data, the representation learning power is increased from
the information learned with unsupervised learning with the re-
maining data without labels and thus together lead to excellent
classification results, comparable to the case where data has com-
plete labels. Taken together, we found DSSDA is promising as a
method for genomic data sets.

6.2 Input Representation with Probabilistic
Continuous Vector-Space Model

The input representation with the neural probabilistic continuous
vector space model is found to be efficient with respect to the better
performance and convergence behavior. Of course, this is in the
case when computational cost is not considered as the top priority.
The increase in time for a training iteration is due to representing
each 3-mer by a vector of size 16, which causes the input to become
almost 16 times larger and increase the time needed to look up
each 3-mer from the hash table. As a result, although the model
converged in less number of epochs, the total time needed for
training is almost 6 times longer for the same model and batch size,
and this is without even considering the time needed for training
the word2vec model.

Nonetheless, in Figure 6, we visualize the learned distribution for
3-mers by projecting them onto 2-dimensional coordinates using
t-SNE technique[25]. Figure 6 proves our hypothesis about the exis-
tence of non-random semantics and relationships among different
3-mers since some are projected closer than others in 2-dimensional
space. This is seemingly a key factor for the performance gain and
training convergence, which is ignored with the one-hot vector
input representation. In other words, learning proper manifolds
for machine learning tasks might be beneficial if the input is repre-
sented with such vectors, as evidenced with successes of the same
word embedding techniques for human language modeling.

In this line of direction, we could further consider multiple k-
mers[9], instead of using a single k-mer, as multiple channels in
input. The question is whether the required additional computing

Session 10: Deep Learning and Applications ACM-BCB’18, August 29-September 1, 2018, Washington, DC, USA

251

cost is practically justified for potential improvement in accuracy.
Nonetheless, it is theoretically intriguing for detecting various
regulatory motifs occurring in different length scales[9].

7 CONCLUDING REMARKS
A complete understanding of transcriptional mechanisms is a grand
challenge in biology, and advancing novel application tools like
DSSDA would contribute research efforts to tackle it effectively and
efficiently. Our platform is promising, as shown in this work, to ana-
lyze the sequence patterns of DHSs across multiple conditions. This
capacity can be easily extended to analyze other types of sequence
data arising from RNA-Seq, DNA sequencing for whole genomes or
exomes, ChIP-Seq, Methyl-Seq, and many others. We showed that
the deep generative ConvNet that is part of DSSDA can have an ex-
cellent ability to perform supervised and semi-supervised learning
with high performance. This suggests the potential of our approach
for object detection and more challenging attribute-based learning
(i.e., biological contexts such as specific type of motifs with differ-
ent protein binding or cooperative roles of multiple DHSs). Surely,
a complete understanding can be achieved when all aspects of
regulation for transcription in genome, epigenome, transcriptome,
and proteome are considered together, and our work contributes a
promising platform for the case of sequence-dependent patterns
with DHSs. Furthermore, we investigated different input represen-
tations for sequences and their effects on training ConvNets. In
our future work, we plan to explore its potential for learning hid-
den attributes, such as biological nuance features, and efficiently
detecting them, as well as to extend the platform for integrating
multi-omics data sets.

ACKNOWLEDGMENTS
This work was partially funded by NIH grants (P20GM103458-
10, P30GM110760-03, P20GM103424), NSF grants (MRI-1338051,
IBSS-L-1620451, SCC-1737557, RAPID-1762600), LA Board of Re-
gents grants (LEQSF(2016-19)-RD-A-08 and ITRS), and IBM faculty
awards. The authors would like to thank NVIDIA for its generosity
in allowing them to use their compute resources.

REFERENCES
[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al.
2016. Tensorflow: Large-scale machine learning on heterogeneous distributed
systems. arXiv preprint arXiv:1603.04467 (2016).

[2] Babak Alipanahi, Andrew Delong, Matthew T Weirauch, and Brendan J Frey.
2015. Predicting the sequence specificities of DNA-and RNA-binding proteins by
deep learning. Nature biotechnology 33, 8 (2015), 831–838.

[3] Timothy L Bailey, Mikael Boden, Fabian A Buske, Martin Frith, Charles E Grant,
Luca Clementi, Jingyuan Ren, Wilfred W Li, and William S Noble. 2009. MEME
SUITE: tools for motif discovery and searching. Nucleic acids research 37, suppl_2
(2009), W202–W208.

[4] Marco Baroni, Georgiana Dinu, and Germán Kruszewski. 2014. Don’t count,
predict! A systematic comparison of context-counting vs. context-predicting
semantic vectors.. In ACL (1). 238–247.

[5] Yoshua Bengio, Aaron Courville, and Pascal Vincent. 2013. Representation
learning: A review and new perspectives. IEEE transactions on pattern analysis
and machine intelligence 35, 8 (2013), 1798–1828.

[6] Yoshua Bengio, Li Yao, Guillaume Alain, and Pascal Vincent. 2013. Generalized
denoising auto-encoders as generative models. In Advances in Neural Information
Processing Systems. 899–907.

[7] ENCODE Project Consortium et al. 2012. An integrated encyclopedia of DNA
elements in the human genome. Nature 489, 7414 (2012), 57–74.

[8] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Ima-
genet: A large-scale hierarchical image database. In Computer Vision and Pattern
Recognition, 2009. CVPR 2009. IEEE Conference on. IEEE, 248–255.

[9] Mahmoud Ghandi, Dongwon Lee, Morteza Mohammad-Noori, and Michael A
Beer. 2014. Enhanced regulatory sequence prediction using gapped k-mer features.
PLoS computational biology 10, 7 (2014), e1003711.

[10] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial
nets. In Advances in neural information processing systems. 2672–2680.

[11] Eduardo G Gusmao, Manuel Allhoff, Martin Zenke, and Ivan G Costa. 2016. Anal-
ysis of computational footprinting methods for DNase sequencing experiments.
Nature methods (2016).

[12] Hamid Reza Hassanzadeh and May D Wang. 2016. DeeperBind: Enhancing
prediction of sequence specificities of DNA binding proteins. In Bioinformatics
and Biomedicine (BIBM), 2016 IEEE International Conference on. IEEE, 178–183.

[13] Housheng Hansen He, Clifford A Meyer, Mei-Wei Chen, Chongzhi Zang, Yin Liu,
Prakash K Rao, Teng Fei, Han Xu, Henry Long, X Shirley Liu, et al. 2014. Refined
DNase-seq protocol and data analysis reveals intrinsic bias in transcription factor
footprint identification. Nature methods 11, 1 (2014), 73–78.

[14] Geoffrey E Hinton and Ruslan R Salakhutdinov. 2006. Reducing the dimensional-
ity of data with neural networks. science 313, 5786 (2006), 504–507.

[15] David R Kelley, Jasper Snoek, and John L Rinn. 2016. Basset: learning the regu-
latory code of the accessible genome with deep convolutional neural networks.
Genome research 26, 7 (2016), 990–999.

[16] Diederik P Kingma, Shakir Mohamed, Danilo Jimenez Rezende, and Max Welling.
2014. Semi-supervised learning with deep generative models. In Advances in
Neural Information Processing Systems. 3581–3589.

[17] Diederik P Kingma and Max Welling. 2013. Auto-encoding variational bayes.
arXiv preprint arXiv:1312.6114 (2013).

[18] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifica-
tion with deep convolutional neural networks. In Advances in neural information
processing systems. 1097–1105.

[19] Anshul Kundaje, Wouter Meuleman, Jason Ernst, Misha Bilenky, Angela Yen,
Alireza Heravi-Moussavi, Pouya Kheradpour, Zhizhuo Zhang, Jianrong Wang,
Michael J Ziller, et al. 2015. Integrative analysis of 111 reference human
epigenomes. Nature 518, 7539 (2015), 317–330.

[20] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. Nature
521, 7553 (2015), 436–444.

[21] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E
Howard, Wayne Hubbard, and Lawrence D Jackel. 1989. Backpropagation applied
to handwritten zip code recognition. Neural computation 1, 4 (1989), 541–551.

[22] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-
based learning applied to document recognition. Proc. IEEE 86, 11 (1998), 2278–
2324.

[23] Dongwon Lee, David U Gorkin, Maggie Baker, Benjamin J Strober, Alessandro L
Asoni, Andrew S McCallion, and Michael A Beer. 2015. A method to predict the
impact of regulatory variants from DNA sequence. Nature genetics 47, 8 (2015),
955.

[24] Lars Maaløe, Casper Kaae Sønderby, Søren Kaae Sønderby, and Ole Winther. 2016.
Auxiliary deep generative models. arXiv preprint arXiv:1602.05473 (2016).

[25] Laurens van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE.
Journal of Machine Learning Research 9, Nov (2008), 2579–2605.

[26] Matthew T Maurano, Richard Humbert, Eric Rynes, Robert E Thurman, Eric
Haugen, Hao Wang, Alex P Reynolds, Richard Sandstrom, Hongzhu Qu, Jennifer
Brody, et al. 2012. Systematic localization of common disease-associated variation
in regulatory DNA. Science 337, 6099 (2012), 1190–1195.

[27] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
estimation of word representations in vector space. arXiv preprint arXiv:1301.3781
(2013).

[28] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.
Distributed representations of words and phrases and their compositionality. In
Advances in neural information processing systems. 3111–3119.

[29] Mohammad Pezeshki, Linxi Fan, Philemon Brakel, Aaron Courville, and Yoshua
Bengio. 2016. Deconstructing the ladder network architecture. In International
Conference on Machine Learning. 2368–2376.

[30] Antti Rasmus, Mathias Berglund, Mikko Honkala, Harri Valpola, and Tapani
Raiko. 2015. Semi-supervised learning with ladder networks. In Advances in
Neural Information Processing Systems. 3546–3554.

[31] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. 2014. Stochastic
backpropagation and approximate inference in deep generative models. arXiv
preprint arXiv:1401.4082 (2014).

[32] Jürgen Schmidhuber. 2015. Deep learning in neural networks: An overview.
Neural networks 61 (2015), 85–117.

[33] Richard I Sherwood, Tatsunori Hashimoto, Charles W O’donnell, Sophia Lewis,
Amira A Barkal, John Peter Van Hoff, Vivek Karun, Tommi Jaakkola, and David K
Gifford. 2014. Discovery of directional and nondirectional pioneer transcription
factors by modeling DNase profile magnitude and shape. Nature biotechnology
32, 2 (2014), 171–178.

[34] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

Session 10: Deep Learning and Applications ACM-BCB’18, August 29-September 1, 2018, Washington, DC, USA

252

[35] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. 2015.
Going deeper with convolutions. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition. 1–9.

[36] Robert E Thurman, Eric Rynes, Richard Humbert, Jeff Vierstra, Matthew T Mau-
rano, Eric Haugen, Nathan C Sheffield, Andrew B Stergachis, Hao Wang, Ben-
jamin Vernot, et al. 2012. The accessible chromatin landscape of the human
genome. Nature 489, 7414 (2012), 75–82.

[37] Harri Valpola. 2015. From neural PCA to deep unsupervised learning. Advances
in Independent Component Analysis and Learning Machines (2015), 143–171.

[38] Jason Weston, Frédéric Ratle, Hossein Mobahi, and Ronan Collobert. 2012. Deep
learning via semi-supervised embedding. In Neural Networks: Tricks of the Trade.
Springer, 639–655.

[39] Matthew D Zeiler and Rob Fergus. 2014. Visualizing and understanding convolu-
tional networks. In European conference on computer vision. Springer, 818–833.

[40] Haoyang Zeng, Matthew D Edwards, Ge Liu, and David K Gifford. 2016. Con-
volutional neural network architectures for predicting DNA–protein binding.
Bioinformatics 32, 12 (2016), i121–i127.

[41] Jian Zhou and Olga G Troyanskaya. 2015. Predicting effects of noncoding variants
with deep learning-based sequence model. Nature methods 12, 10 (2015), 931–934.

Session 10: Deep Learning and Applications ACM-BCB’18, August 29-September 1, 2018, Washington, DC, USA

253

	Abstract
	1 Introduction
	2 Background
	2.1 DNase-Seq and Data Analytics
	2.2 Supervised and Semi-Supervised Deep Learning with ConvNets

	3 Related Works
	4 Methods
	4.1 Sequence Classification Problem
	4.2 Input Representation
	4.3 Deep ConvNets for Supervised learning
	4.4 Deep Generative ConvNets for Semi-supervised Learning
	4.5 Distributed Training

	5 Results
	5.1 Dataset
	5.2 Supervised Learning
	5.3 Semi-supervised Learning
	5.4 Distributed Training Analysis
	5.5 Input Representation
	5.6 Motif Vizualization

	6 Discussion
	6.1 DSSDA for Biological Sequence Analysis
	6.2 Input Representation with Probabilistic Continuous Vector-Space Model

	7 Concluding Remarks
	References

